题目内容
20.离心率为2的双曲线E的一个焦点到一条渐近线的距离为1,则E的标准方程可以是( )| A. | 3x2-y2=1 | B. | $\frac{x^2}{3}-{y^2}$=1 | C. | x2-3y2=1 | D. | ${x^2}-\frac{y^2}{3}=1$ |
分析 对照选项,可设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),运用离心率公式和点到直线的距离公式,解方程可得a,b,进而得到双曲线的方程.
解答 解:可设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
由题意可得e=$\frac{c}{a}$=2,
一个焦点(c,0)到一条渐近线y=$\frac{b}{a}$x的距离为1,
可得$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=b=1,
又c2=a2+1,解得a=$\frac{\sqrt{3}}{3}$,
即有双曲线的方程为$\frac{{x}^{2}}{\frac{1}{3}}$-y2=1.
故选:A.
点评 本题考查双曲线的方程的求法,注意运用待定系数法,考查双曲线的渐近线方程和离心率,考查运算能力,属于基础题.
练习册系列答案
相关题目
20.设函数f1(x)=x2,f2(x)=$\frac{3}{x+1}$,f3(x)=sinπx,xi=$\frac{i}{9}$(i=0,1,2,…,9),记Ik=$\sum_{i=1}^{9}$|fk(xi)-fk(xi-1)|,则( )
| A. | I1<I2<I3 | B. | I2<I1<I3 | C. | I3<I2<I1 | D. | I1<I3<I2 |
15.已知双曲线C:${x^2}-\frac{y^2}{8}=1$的左右焦点分别是F1,F2,过F2的直线l与C的左右两支分别交于A,B两点,且|AF1|=|BF1|,则|AB|=( )
| A. | $2\sqrt{2}$ | B. | 3 | C. | 4 | D. | $2\sqrt{2}+1$ |
12.双曲线$\frac{{x}^{2}}{4}$-y2=1的右顶点到该双曲线一条渐近线的距离为( )
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{4\sqrt{5}}{5}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 1 |
9.已知M(x0,y0)是曲线C:$\frac{{x}^{2}}{2}$-y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若$\overrightarrow{MF}$$•\overrightarrow{MN}$<0,则x0的取值范围是( )
| A. | (-1,0)∪(0,1) | B. | (-1,0) | C. | (0,1) | D. | (-1,1) |
10.已知函数f(x)=$\left\{\begin{array}{l}{2(x+1)(-1≤x≤0)}\\{2-x(0<x≤2)}\end{array}\right.$,不等式f(x)≤lo${g}_{\frac{1}{2}}$(x+1)的解集是( )
| A. | {x|-1<x≤0} | B. | {x|-1<x≤-$\frac{1}{2}$} | C. | {x|-1≤x≤-$\frac{1}{2}$} | D. | {x|-1≤x≤-$\frac{1}{3}$} |