题目内容

3.已知函数$f(x)=\left\{\begin{array}{l}{log_2}x,0<x≤8\\-\frac{1}{4}x+5,x>8\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(8,20)B.(0,8)C.(1,20)D.(4,16)

分析 先画出图象,再根据条件即可求出其范围.

解答 解:根据已知画出函数图象:
不妨设a<b<c,
∵f(a)=f(b)=f(c),
∴-log2a=log2b=-$\frac{1}{4}$c+5,
∴log2(ab)=0,0<-$\frac{1}{4}$c+5<3,
解得ab=1,8<c<20,
∴8<abc<20.
故选A.

点评 由题意正确画出图象和熟练掌握对数函数的图象是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网