题目内容

已知集合M={x|-1<x<1},N={x|log2x<1},则M∩N等于(  )
A、{x|0<x<1}
B、{x|-1<x<2}
C、{x|-1<x<0}
D、{x|-1<x<1}
考点:交集及其运算
专题:集合
分析:求出N中不等式的解集确定出N,找出M与N的交集即可.
解答: 解:由N中的不等式变形得:log2x<1=log22,即0<x<2,
∴N={x|0<x<2},
∵M={x|-1<x<1},
∴M∩N={x|0<x<1}.
故选:A.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网