题目内容

4.填空:
(1)${C}_{3n}^{38-n}{+C}_{21+n}^{3n}$=466;
(2)${C}_{13+n}^{3n}{+C}_{12+n}^{3n-1}{+C}_{11+n}^{3n-2}+…{+C}_{2n}^{17-n}$=124;
(3)${C}_{3}^{3}{+C}_{4}^{3}{+C}_{5}^{3}+…{+C}_{10}^{3}$=330.

分析 (1)根据组合数的意义,求出n=20,再计算${C}_{3n}^{38-n}{+C}_{21+n}^{3n}$的值;
(2)根据组合数的意义,求出n=6,再代人计算${C}_{13+n}^{3n}{+C}_{12+n}^{3n-1}{+C}_{11+n}^{3n-2}+…{+C}_{2n}^{17-n}$的值;
(3)根据组合数公式${C}_{n}^{m}$+${C}_{n}^{m-1}$=${C}_{n+1}^{m}$,进行化简与运算即可.

解答 解:(1)∵$\left\{\begin{array}{l}{3n≥38-n}\\{3n≤21+n}\end{array}\right.$,
∴$\frac{19}{2}$≤n≤$\frac{21}{2}$,
又∵n∈N*
∴n=20,
即${C}_{3n}^{38-n}{+C}_{21+n}^{3n}$=${C}_{30}^{28}$+${C}_{31}^{30}$
=${C}_{30}^{2}$+${C}_{31}^{1}$
=$\frac{30×29}{2}$+31
=466;
(2)∵$\left\{\begin{array}{l}{3n≤13+n}\\{2n≥17-n}\end{array}\right.$,
∴$\frac{17}{3}$≤n≤$\frac{13}{2}$,
又∵n∈N*
∴n=6;
∴${C}_{13+n}^{3n}{+C}_{12+n}^{3n-1}{+C}_{11+n}^{3n-2}+…{+C}_{2n}^{17-n}$
=${C}_{19}^{18}$+${C}_{18}^{17}$+${C}_{17}^{16}$+…+${C}_{12}^{11}$
=${C}_{19}^{1}$+${C}_{18}^{1}$+${C}_{17}^{1}$+…+${C}_{12}^{1}$
=19+18+17+…+12
=$\frac{(19+12)×8}{2}$=124;
(3)${C}_{3}^{3}{+C}_{4}^{3}{+C}_{5}^{3}+…{+C}_{10}^{3}$=${C}_{4}^{4}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$
=${C}_{5}^{4}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$
=${C}_{6}^{4}$+…+${C}_{10}^{3}$
=…=${C}_{10}^{4}$+${C}_{10}^{3}$=${C}_{11}^{4}$=330.
故答案为:466,124,330.

点评 本题考查了组合数公式的定义与性质的意义问题,也考查了转化思想与计算能力,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网