题目内容
双曲线的焦点在 x轴上,虚轴长为12,离心率为,则双曲线的标准方程为______________________.
=1
在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.
(1) 求点P的轨迹C的方程;
(2) 若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1) 求椭圆C的方程;
(2) 已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
已知直线l经过点(1,0)且一个方向向量d=(1,1).椭圆C:=1(m>1)的左焦点为F1.若直线l与椭圆C交于A,B两点,满足·=0,求实数m的值.
已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.
(1) 求椭圆的方程;
(2) 设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.
如图,F1、F2分别是双曲线C:=1(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P、Q两点,线段PQ的垂直平分线与x轴交于点M.若MF2=F1F2,则C的离心率是________.
已知双曲线=1(a>0,b>0)与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若PF=5,则双曲线的渐近线方程为________.
观察下列不等式:
…;照此规律,第五个不等式是________.
用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步验证的表达式为________.