题目内容

14.已知函数f(x)=x3-3x2
(Ⅰ) 求f(x)的单调区间;
(Ⅱ) 若f(x)的定义域为[-1,m]时,值域为[-4,0],求m的最大值.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为f(m)≤0,求出m的最大值即可.

解答 解:(Ⅰ)f′(x)=3x2-6x=3x(x-2),
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
故f(x)在(-∞,0)递增,在(0,2)递减,在(2,+∞)递增;
(Ⅱ)由(Ⅰ)f(-1)=-4,
故f(m)=m3-3m2≤0,解得:m≤3,
故m的最大值是3.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网