题目内容

9.已知tanθ=3,则cos($\frac{3π}{2}$+2θ)=(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用诱导公式、同角三角函数的基本关系,求得式子cos($\frac{3π}{2}$+2θ)的值.

解答 解:∵tanθ=3,则cos($\frac{3π}{2}$+2θ)=sin2θ=$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{6}{9+1}$=$\frac{3}{5}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网