题目内容
15.已知函数f(x)满足f(x)+1=$\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程f(x)-mx-m=0有两个不同的实根,则实数m的取值范围是( )| A. | (0,$\frac{1}{2}$] | B. | (0,$\frac{1}{2}$) | C. | (0,$\frac{1}{3}$] | D. | (0,$\frac{1}{3}$) |
分析 设x∈(-1,0),则(x+1)∈(0,1),由于当x∈[0,1]时,f(x)=x,可得f(x+1)=x+1.利用f(x)+1=$\frac{1}{f(x+1)}$,可得f(x)=$\left\{\begin{array}{l}{x,x∈[0,1]}\\{\frac{1}{x+1}-1,x∈(-1,0)}\end{array}\right.$,方程f(x)-mx-x=0,化为f(x)=mx+m,画出图象y=f(x),y=m(x+1),M(1,1),N(-1,0).可得kMN=$\frac{1}{2}$.即可得出.
解答
解:设x∈(-1,0),则(x+1)∈(0,1),
∵当x∈[0,1]时,f(x)=x,
∴f(x+1)=x+1.
∵f(x)+1=$\frac{1}{f(x+1)}$,
∴f(x)=$\frac{1}{f(x+1)}$-1=$\frac{1}{x+1}$-1,
∴f(x)=$\left\{\begin{array}{l}{x,x∈[0,1]}\\{\frac{1}{x+1}-1,x∈(-1,0)}\end{array}\right.$,
方程f(x)-mx-x=0,化为f(x)=mx+m,
画出图象y=f(x),y=m(x+1),M(1,1),N(-1,0).
kMN=$\frac{0-1}{-1-1}$=$\frac{1}{2}$.
∵在区间(-1,1]上方程f(x)-mx-x=0有两个不同的实根,
∴$0<m≤\frac{1}{2}$,
故选:A.
点评 本题考查了方程的实数根转化为函数交点问题、函数的图象,考查了数形结合方法、推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=( )
| A. | (0,3] | B. | [-1,3] | C. | (3,+∞) | D. | (0,-1)∪(3,+∞) |
20.经过平面α外一点和平面α内一点与平面α垂直的平面有 ( )
| A. | 1个 | B. | 0个 | C. | 无数个 | D. | 1个或无数个 |
7.如图所示,三视图表示的几何体是( )

| A. | 圆台 | B. | 棱台 | C. | 棱柱 | D. | 圆锥 |
4.如图是函数f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象的一部分,则f(2015)=( )
| A. | 1 | B. | 2 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -3 |