题目内容

12.在△ABC中,交A、B、C所对的边分别为a,b,c,且c=acosB+bsinA
(Ⅰ)求A;
(Ⅱ)若a=2$\sqrt{2}$,求△ABC的面积的最值.

分析 (Ⅰ)根据正弦定理、诱导公式、两角和的正弦函数化简已知的式子,由内角的范围和特殊角的三角函数值求出A;
(Ⅱ)由条件和余弦定理列出方程化简后,由不等式求出bc的范围,代入三角形的面积公式求出△ABC的面积的最大值.

解答 解:(Ⅰ)由题意知,c=acosB+bsinA,
由正弦定理得,sinC=sinAcosB+sinBsinA,
∵sin(A+B)=sin(π-C)=sinC,
∴sin(A+B)=sinAcosB+sinBsinA,
化简得,sinBcosA=sinBsinA,
∵sinB>0,∴cosA=sinA,则tanA=1,
由0<A<π得A=$\frac{π}{4}$;
(Ⅱ)∵a=2$\sqrt{2}$,A=$\frac{π}{4}$,∴由余弦定理得,
a2=b2+c2-2bccosA,则$8={b}^{2}+{c}^{2}-\sqrt{2}bc$,
即$8≥2bc-\sqrt{2}bc$,解得bc≤$4(2+\sqrt{2})$,当且仅当b=c时取等号,
∴△ABC的面积S=$\frac{1}{2}bcsinA=\frac{\sqrt{2}}{4}bc≤2\sqrt{2}+2$,
∴△ABC的面积的最大值是$2\sqrt{2}+2$.

点评 本题考查正弦定理、余弦定理,三角形的面积公式,诱导公式、两角和的正弦函数等,以及不等式在求出最值中的应用,考查化简、变形能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网