题目内容

7.已知长方体ABCD-A1B1C1D1中,AB=BC,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{1}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{3}{5}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线BE与CD1所形成角的余弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设AA1=2AB=2,
则B(1,1,0),E(1,0,1),C(0,1,0),D1(0,0,2),
$\overrightarrow{BE}$=(0,-1,1),$\overrightarrow{C{D}_{1}}$=(0,1,-2),
设异面直线BE与CD1所形成角为θ,
则cosθ=$\frac{|\overrightarrow{BE}•\overrightarrow{C{D}_{1}}|}{|\overrightarrow{BE}|•|\overrightarrow{C{D}_{1}}|}$=$\frac{3}{\sqrt{2}•\sqrt{5}}$=$\frac{3\sqrt{10}}{10}$.
异面直线BE与CD1所形成角的余弦值为$\frac{3\sqrt{10}}{10}$.
故选:C.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网