题目内容

7.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$.
(Ⅰ)若AC的中点为E,求A1C与DE所成的角的正弦值;
(Ⅱ)求二面角B1-AC-D1(锐角)的余弦值.

分析 (Ⅰ)以A为原点建立空间直角坐标系,利用向量法能求出A1C与DE所成的角的正弦值.
(Ⅱ)求出平面B1AC的法向量和平面D1AC的法向量,利用向量法能求出二面角B1-AC-D1(锐角)的余弦值.

解答 (本小题满分12分)
解:(Ⅰ)由AD=CD,AC的中点为E,所以 DE⊥AC.
如图,以A为原点建立空间直角坐标系,依题意可得:
A(0,0,0 ),B(1,0,0),A1(0,0,2)C(0,2,0),
D(-2,1,0),B1(1,0,2),D1(-2,1,2),E(0,1,0).
$\overrightarrow{{A_1}C}=(0,2,-2)$,$\overrightarrow{DE}=(2,0,0)$,
∵$\overrightarrow{{A_1}C}•\overrightarrow{DE}=(0,2,-2)•(2,0,0)=0+0+0=0$,
∴A1C⊥DE,∴A1C与DE所成的角为$\frac{π}{2}$.
即A1C与DE所成的角的正弦值为 sin$\frac{π}{2}$=1.(6分)
(Ⅱ)设平面B1AC的法向量为$\overrightarrow m=({x_1},{y_1},{z_1})$,
平面D1AC的法向量为$\overrightarrow n=({x_2},{y_2},{z_2})$.
$\overrightarrow{A{B_1}}$=(1,0,2),$\overrightarrow{A{D_1}}$=(-2,1,2),$\overrightarrow{AC}=(0,2,0)$.
由$\left\{\begin{array}{l}\overrightarrow m•\overrightarrow{A{B_1}}=0\\ \overrightarrow m•\overrightarrow{AC}=0\end{array}\right.$,得$\left\{\begin{array}{l}{x_1}+2{z_1}=0\\ 2{y_1}=0\end{array}\right.$,令z1=1,则$\overrightarrow m=(-2,0,1)$,
同理可得$\overrightarrow n=(1,0,1)$,
$cos<\overrightarrow m,\overrightarrow n>$=$\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}|•|{\overrightarrow n}|}}$=$\frac{-2+1}{{\sqrt{5}\sqrt{2}}}=-\frac{{\sqrt{10}}}{10}$,
∴二面角B1-AC-D1(锐角)的余弦值为$\frac{{\sqrt{10}}}{10}$.      (12分)

点评 本题考查异面直线所成角的正弦值的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网