题目内容

20.某种产品的成本f1(x)(万元)与年产量x(吨)之间的函数关系是f1(x)=$\frac{1}{100}$x2,该产品的销售单价f2(x)可以表示为关于年销量的一次函数,其部分图象如图所示,且生产的产品都能在当年销售完.
(1)求f2(x)的解析式及定义域;
(2)当年产量为多少吨时,所获利润s(万元)最大(注:利润=收入-成本);并求出s的最大值.

分析 (1)由题意可设:f2(x)=kx+b(k≠0),由于图象经过点(0,3),(100,2).代入解出即可得出.令f2(x)>0,解得函数的定义域.
(2)设年产量为x吨,s=x•f2(x)-f1(x)=-$\frac{1}{50}$(x-75)2+$\frac{225}{2}$,利用二次函数的单调性即可得出.

解答 解:(1)由题意可设:f2(x)=kx+b(k≠0),由于图象经过点(0,3),(100,2).
∴$\left\{\begin{array}{l}{3=b}\\{2=100k+b}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-\frac{1}{100}}\\{b=3}\end{array}\right.$,
∴f2(x)=$-\frac{1}{100}x$+3,令f2(x)=$-\frac{1}{100}x$+3>0,解得0<x<300,其定义域为(0,300).
(2)设年产量为x吨,s=x•f2(x)-f1(x)=$x(-\frac{1}{100}x+3)$-$\frac{1}{100}$x2=$-\frac{1}{50}{x}^{2}$+3x=-$\frac{1}{50}$(x-75)2+$\frac{225}{2}$,
∴当x=75时,s取得最大值$\frac{225}{2}$(万元).

点评 本题考查了一次函数与二次函数的图象与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网