题目内容
17.在平面直角坐标系中,若直线y=x与直线$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是参数,0≤θ<π)垂直,则θ=( )| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
分析 利用直线y=x与直线$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是参数,0≤θ<π)垂直,可得tanθ=-1,即可得出结论.
解答 解:∵直线y=x与直线$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是参数,0≤θ<π)垂直,
∴tanθ=-1,
∴θ=$\frac{3π}{4}$,
故选D.
点评 本题考查参数方程,考查直线的位置关系,比较基础.
练习册系列答案
相关题目