题目内容
2.不等式|x|<2x-1的解集为{x|x>1}.分析 由题意,$\left\{\begin{array}{l}{x≥0}\\{x<2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{-x<2x-1}\end{array}\right.$,即可得出结论.
解答 解:由题意,$\left\{\begin{array}{l}{x≥0}\\{x<2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{-x<2x-1}\end{array}\right.$,
∴x>1.
故答案为{x|x>1}.
点评 本题考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式来解.
练习册系列答案
相关题目
12.已知A,B分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当$\frac{a}{b}-\frac{1}{3mn}$取最大值时,椭圆C的离心率为( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
17.在平面直角坐标系中,若直线y=x与直线$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是参数,0≤θ<π)垂直,则θ=( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |