题目内容

20.在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.

分析 (Ⅰ)甲班前5位选手的总分为450,乙班前5位选手的总分为443,若乙班总分超过甲班,则甲、乙两班第六位选手的成绩可分别为:(90,98),(90,99),(91,99)三种情况,即可得出乙班总分超过甲班的概率.
(II)(Ⅱ)ξ的可能取值为0,1,2,3,4,利用相互独立与互斥事件的概率计算公式,进而得出分布列与数学期望.

解答 解:(Ⅰ)甲班前5位选手的总分为:87+89+90+91+93=450,
乙班前5位选手的总分为:82+85+92+91+93=443,
若乙班总分超过甲班,则甲、乙两班第六位选手的成绩可分别为:
(90,98),(90,99),(91,99)三种情况,
∴乙班总分超过甲班的概率P=$\frac{3}{10×10}$=$\frac{3}{100}$.
(Ⅱ)ξ的可能取值为0,1,2,3,4,
P(ξ=0)=$\frac{{∁}_{4}^{2}{∁}_{2}^{2}}{{∁}_{6}^{2}•{∁}_{6}^{2}}$=$\frac{6}{225}$,
P(ξ=1)=$\frac{{∁}_{2}^{1}•{∁}_{4}^{1}•{∁}_{2}^{2}+{∁}_{4}^{2}•{∁}_{4}^{1}•{∁}_{2}^{1}}{{∁}_{6}^{5}•{∁}_{6}^{5}}$=$\frac{56}{225}$,
P(ξ=2)=$\frac{{∁}_{2}^{1}{∁}_{4}^{1}{∁}_{4}^{1}{∁}_{2}^{1}+{∁}_{4}^{2}{∁}_{4}^{2}}{{∁}_{6}^{2}•{∁}_{6}^{2}}$=$\frac{101}{225}$,
P(ξ=3)=$\frac{{∁}_{2}^{2}{∁}_{4}^{1}{∁}_{2}^{1}+{∁}_{2}^{1}{∁}_{4}^{1}{∁}_{4}^{2}}{{∁}_{6}^{2}{∁}_{6}^{2}}$=$\frac{56}{225}$,
P(ξ=4)=$\frac{{∁}_{2}^{2}{∁}_{4}^{2}}{{∁}_{6}^{2}{∁}_{6}^{2}}$=$\frac{6}{225}$,
∴ξ的分布列为:

ξ01234
P$\frac{6}{225}$$\frac{56}{225}$$\frac{101}{225}$$\frac{56}{225}$$\frac{6}{225}$
∴E(ξ)=0×$\frac{6}{225}$+1×$\frac{56}{225}$+2×$\frac{101}{225}$+3×$\frac{56}{225}$+4×$\frac{6}{225}$=2.

点评 本题考查了茎叶图的性质、相互独立与互斥事件的概率计算公式、随机变量的分布列及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网