题目内容
11.(1)已知在数列{an}中,a1=7,a2=9,前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),试求整列{an}的通项公式.(2)设数列{an}的前n项和Sn,已知ban-2n=(b-1)Sn.当b=2时,试证明数列{an-n•2n-1}是等比数列.
分析 (1)由递推公式得到an-an-1=2n-1,再由累加法求出数列{an}的通项公式;
(2)由已知利用an=Sn+1-Sn,即可证明{an-n•2n-1}是首项为1,公比为2的等比数列.
解答 解:(1)Sn+Sn-2=2Sn-1+2n-1(n≥3),
∴(Sn+Sn-1)-(Sn-1+Sn-2)=2n-1(n≥3),
∴an-an-1=2n-1,
∴a3-a2=22,
a4-a3=23,
…
∵a1=7,a2=9,
∴a2-a1=9-7=2,
累加得到an-a1=2+22+23+…+2n-1=$\frac{2(1-{2}^{n-1})}{1-2}$=2n-2,
∴an=2n+5,
当n=1时,a1=7成立,
∴an=2n+5;
(2)由题意知a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1.
两式相减得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.
当b=2时,知an+1=2an+2n.
∴an+1-(n+1)•2n=2an+2n-(n+1)•2n=2(an-n•2n-1),
又a1-1×21-1=2-1=1≠0,
∴{an-n•2n-1}是首项为1,公比为2的等比数列.
点评 本题考查数列的通项公式的求法,解题时要认真审题,注意累加法的合理运用.
练习册系列答案
相关题目
10.已知集合A={1,2,3},B={3,4},则A∪B=( )
| A. | {1,2} | B. | {1,2,3,4} | C. | {1,2,3} | D. | {1,2,4} |
19.将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在[0,$\frac{π}{2}$]上的最小值为( )
| A. | 0 | B. | -1 | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
6.已知二面角α-l-β的平面角为θ,PA⊥α,PB⊥β,A,B为垂足,PA=4,PB=2,设A,B到二面角的棱l的距离分别为x,y,当θ变化时点(x,y)的轨迹为( )
| A. | 圆弧 | B. | 双曲线的一段 | C. | 线段 | D. | 椭圆的一段 |
16.下列函数中,?a∈R,都有f(a)+f(-a)=1成立的是( )
| A. | f(x)=ln$\sqrt{1+{x}^{2}}$ | B. | f(x)=cos2(x-$\frac{π}{4}$) | C. | f(x)=$\frac{(x-1)^{2}}{1+{x}^{2}}$ | D. | f(x)=$\frac{{2}^{x}}{{2}^{x}-1}$ |
20.已知{an}为等比数列,a1=3,且4a1,2a2,a3成等差数列,则a3+a5等于( )
| A. | 189 | B. | 72 | C. | 60 | D. | 33 |