题目内容
5.函数f(x)=sinx在区间(0,10π)上可找到n个不同数x1,x2,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$,则n的最大值等于10.分析 作出函数f(x)的图象,设$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$=k,则由数形结合即可得到结论.
解答
解:设$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$=k,
则条件等价为f(x)=kx,的根的个数,
作出函数f(x)和y=kx的图象,
由图象可知y=kx与函数f(x)最多有10个交点,
即n的最大值为10,
故答案是:10.
点评 本题主要考查函数交点个数的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
11.函数$f(x)=\frac{{3{x^2}-8lnx}}{2lnx}$在[2,4]上的最大值为( )
| A. | $\frac{6-4ln2}{ln2}$ | B. | $\frac{6}{ln2}+4$ | C. | $\frac{12}{ln2}-4$ | D. | 3e-4 |
8.高斯函数f(x)=[x]的函数值表示不超过x的最大整数,如[-2.3]=-3,[1.2]=1.设函数g(x)=x-f(x),函数u(x)={sinπx},则下列说法正确的是( )
| A. | 函数g(x)与u(x)的值域相同 | B. | 函数g(x)与u(x)的最小正周期相同 | ||
| C. | 函数g(x)与u(x)的单调区间相同 | D. | 函数g(x)与u(x)奇偶性相同 |
15.已知点(a,b)在圆C:x2+y2=r2(r≠0)的外部,则ax+by=r2与圆C的位置关系是( )
| A. | 相切 | B. | 相离 | C. | 内含 | D. | 相交 |