题目内容
1.在等差数列{an}中,a2+a5=-22,a3+a6=-30.(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为2的等比数列,求数列{bn}的前n项和Sn.
分析 (1)设等差数列{an}公差为d,由a2+a5=-22,a3+a6=-30.可得2a1+4d=-22,2a1+7d=-30,解得a1,d.
(2)由题意可得:an+bn=2n-1,bn=2n-1+4n-3.利用等差数列与等比数列的求和公式即可得出.
解答 解:(1)设等差数列{an}公差为d,∵a2+a5=-22,a3+a6=-30.∴2a1+4d=-22,2a1+7d=-30,解得a1=-1,d=-4.
∴an=-1-4(n-1)=3-4n.
(2)由题意可得:an+bn=2n-1,bn=2n-1+4n-3.
∴Sn=$\frac{{2}^{n}-1}{2-1}$+$\frac{n(1+4n-3)}{2}$=2n-1-n+2n2.
点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
11.已知动点P(x,y)在椭圆C:$\frac{x^2}{25}+\frac{y^2}{16}$=1上,F为椭圆C的右焦点,若点M满足|$\overrightarrow{MF}$|=1且$\overrightarrow{PM}•\overrightarrow{MF}$=0,则|$\overrightarrow{PM}$|的最小值为( )
| A. | $\sqrt{3}$ | B. | 3 | C. | $\frac{12}{5}$ | D. | 1 |
9.已知随机变量X服从正态分布N(μ,σ2),μ=4,σ=1,则P(5<X<6)=( )
| A. | 0.1358 | B. | 0.1359 | C. | 0.2176 | D. | 0.2718 |