题目内容
设O为△ABC的外心,且
+
+
=
,则△ABC的内角C=( )
| OA |
| OB |
| 2 |
| OC |
| 0 |
分析:由
+
+
=
,移项得
+
=-
,再平方得到
•
=0,从而 ∠AOB=
,最后根据圆心角等于同弧所对的圆周的两倍得△ABC中的内角C值.
| OA |
| OB |
| 2 |
| OC |
| 0 |
| OA |
| OB |
| 2 |
| OC |
| OA |
| OB |
| π |
| 4 |
解答:解:设外接圆的半径为R,
∵
+
+
=
,
∴
+
=-
,
∴(
+
) 2=(
) 2,
∴2R2+2
•
=2R2,
∴
•
=0,
∴∠AOB=
,
根据圆心角等于同弧所对的圆周的两倍得:
△ABC中的内角C值为=
.
故选B.
∵
| OA |
| OB |
| 2 |
| OC |
| 0 |
∴
| OA |
| OB |
| 2 |
| OC |
∴(
| OA |
| OB |
| 2 |
| OC |
∴2R2+2
| OA |
| OB |
∴
| OA |
| OB |
∴∠AOB=
| π |
| 4 |
根据圆心角等于同弧所对的圆周的两倍得:
△ABC中的内角C值为=
| π |
| 4 |
故选B.
点评:本小题主要考查三角形外心的应用、向量在几何中的应用等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关题目
设O为△ABC的外心,且3
+4
+5
=
,则△ABC中的内角C值为( )
| OA |
| OB |
| OC |
| 0 |
A、
| ||
B、
| ||
C、
| ||
D、
|