题目内容

设O为△ABC的外心,且3
OA
+4
OB
+5
OC
=
0
,则△ABC的内角C的值为
π
4
π
4
分析:3
OA
+4
OB
+5
OC
=
0
,移项得3
OA
+4
OB
=-5
OC
,再平方得:(3
OA
+4
OB
)2=(5
OC
)2
,得到 
OA
OB
=0,从而∠AOB=
π
2
,最后根据圆心角等于同弧所对的圆周的两倍得△ABC中的内角C值.
解答:解:设外接圆的半径为R,
3
OA
+4
OB
+5
OC
=
0

3
OA
+4
OB
=-5
OC

(3
OA
+4
OB
)2=(5
OC
)2

∴25R2+24
OA
OB
=25R2
OA
OB
=0,
∴∠AOB=
π
2

根据圆心角等于同弧所对的圆周的两倍得:
△ABC中的内角C值为
π
4

故答案为:
π
4
点评:本小题主要考查三角形外心的应用、向量在几何中的应用等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网