题目内容
设O为△ABC的外心,且3
+4
+5
=
,则△ABC的内角C的值为
.
| OA |
| OB |
| OC |
| 0 |
| π |
| 4 |
| π |
| 4 |
分析:由3
+4
+5
=
,移项得3
+4
=-5
,再平方得:(3
+4
)2=(5
)2,得到
•
=0,从而∠AOB=
,最后根据圆心角等于同弧所对的圆周的两倍得△ABC中的内角C值.
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| OA |
| OB |
| π |
| 2 |
解答:解:设外接圆的半径为R,
∵3
+4
+5
=
,
∴3
+4
=-5
,
∴(3
+4
)2=(5
)2,
∴25R2+24
•
=25R2,
∴
•
=0,
∴∠AOB=
,
根据圆心角等于同弧所对的圆周的两倍得:
△ABC中的内角C值为
故答案为:
∵3
| OA |
| OB |
| OC |
| 0 |
∴3
| OA |
| OB |
| OC |
∴(3
| OA |
| OB |
| OC |
∴25R2+24
| OA |
| OB |
∴
| OA |
| OB |
∴∠AOB=
| π |
| 2 |
根据圆心角等于同弧所对的圆周的两倍得:
△ABC中的内角C值为
| π |
| 4 |
故答案为:
| π |
| 4 |
点评:本小题主要考查三角形外心的应用、向量在几何中的应用等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关题目
设O为△ABC的外心,且3
+4
+5
=
,则△ABC中的内角C值为( )
| OA |
| OB |
| OC |
| 0 |
A、
| ||
B、
| ||
C、
| ||
D、
|