题目内容

设O为△ABC的外心,若x
OA
+y
OB
+z
OC
=
0
,C为△ABC的内角,则cos2C=
 
.(用已知数x,y,z表示)
分析:x
OA
+y
OB
+z
OC
=
0
,移项得x
OA
+y
OB
=-z
OC
,再平方得:(x
OA
+y
OB
) 2=(z
OC
) 2
,得到 2xy
OA
OB
=2xyR2cos2C=z2R2-(x2+y2)R2,据圆心角等于同弧所对的圆周的两倍以及向量的数量积得cos2C的值.
解答:解:设外接圆的半径为R,
x
OA
+y
OB
+z
OC
=
0

x
OA
+y
OB
=-z
OC

(x
OA
+y
OB
) 2=(z
OC
) 2

∴(x2+y2)R2+2xy
OA
OB
=z2R2
∴2xy
OA
OB
=2xyR2cos2C=z2R2-(x2+y2)R2
∴cos2C=
z2-x2-y2
2xy

故答案为:
z2-x2-y2
2xy
点评:本小题主要考查三角形外心的应用、向量在几何中的应用等基础知识,考查运算求解能力与转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网