题目内容
设O为△ABC的外心,若x| OA |
| OB |
| OC |
| 0 |
分析:由x
+y
+z
=
,移项得x
+y
=-z
,再平方得:(x
+y
) 2=(z
) 2,得到 2xy
•
=2xyR2cos2C=z2R2-(x2+y2)R2,据圆心角等于同弧所对的圆周的两倍以及向量的数量积得cos2C的值.
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| OA |
| OB |
解答:解:设外接圆的半径为R,
∵x
+y
+z
=
,
∴x
+y
=-z
,
∴(x
+y
) 2=(z
) 2,
∴(x2+y2)R2+2xy
•
=z2R2,
∴2xy
•
=2xyR2cos2C=z2R2-(x2+y2)R2
∴cos2C=
,
故答案为:
.
∵x
| OA |
| OB |
| OC |
| 0 |
∴x
| OA |
| OB |
| OC |
∴(x
| OA |
| OB |
| OC |
∴(x2+y2)R2+2xy
| OA |
| OB |
∴2xy
| OA |
| OB |
∴cos2C=
| z2-x2-y2 |
| 2xy |
故答案为:
| z2-x2-y2 |
| 2xy |
点评:本小题主要考查三角形外心的应用、向量在几何中的应用等基础知识,考查运算求解能力与转化思想.属于中档题.
练习册系列答案
相关题目
设O为△ABC的外心,且3
+4
+5
=
,则△ABC中的内角C值为( )
| OA |
| OB |
| OC |
| 0 |
A、
| ||
B、
| ||
C、
| ||
D、
|