题目内容

13.如图,在三棱锥C-PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,点M是PC的中点,点N在线段AB上,且MN⊥AB.
(1)求AN的长;
(2)求锐二面角P-NC-A的余弦值.

分析 (1)如图,分别取AB,AC的中点O,Q,连接OP,OQ,以O为原点,以OP为x轴,以OA为y轴,以OQ为z轴,建立空间直角坐标系,设N(0,t,0).由$\overrightarrow{NM}$⊥$\overrightarrow{BA}$,可得$\overrightarrow{NM}$•$\overrightarrow{BA}$=0,解得t,即可得出AN.
(2)设平面MNC的一个法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{NC}=0}\\{\overrightarrow{n}•\overrightarrow{NM}=0}\end{array}\right.$,可得$\overrightarrow{n}$,平面ANC的一个法向量为$\overrightarrow{m}$=(1,0,0),利用cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$即可得出.

解答 解:(1)如图,分别取AB,AC的中点O,Q,连接OP,OQ,
以O为原点,以OP为x轴,以OA为y轴,以OQ为z轴,
建立空间直角坐标系,
则由题意知:A(0,3,0),B(0,-3,0),
P(4,0,0),C(0,-3,4),
M(2,-$\frac{3}{2}$,2),N(0,t,0).
$\overrightarrow{NM}$=$(2,-\frac{3}{2}-t,2)$,$\overrightarrow{BA}$=(0,6,0).
∵$\overrightarrow{NM}$⊥$\overrightarrow{BA}$,∴$\overrightarrow{NM}$•$\overrightarrow{BA}$=$6(-\frac{3}{2}-t)$=0,解得t=-$\frac{3}{2}$,
∴AN=3-$(-\frac{3}{2})$=$\frac{9}{2}$.
(2)N$(0,-\frac{3}{2},0)$,∴$\overrightarrow{NC}$=$(0,-\frac{3}{2},4)$,$\overrightarrow{NM}$=(2,0,2),
设平面MNC的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{NC}=0}\\{\overrightarrow{n}•\overrightarrow{NM}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-\frac{3}{2}y+4z=0}\\{2x+2z=0}\end{array}\right.$,则取$\overrightarrow{n}$=(-3,8,3),
平面ANC的一个法向量为$\overrightarrow{m}$=(1,0,0),
cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-3}{\sqrt{9+64+9}×1}$=-$\frac{3\sqrt{82}}{82}$.
∴锐二面角P-NC-A的余弦值为$\frac{3\sqrt{82}}{82}$.

点评 本题考查了空间位置关系、法向量的应用、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网