题目内容
4.设$\sqrt{1-co{s}^{2}α}$=-sinα,求角α的取值范围.分析 由$\sqrt{1-co{s}^{2}α}$=-sinα,可得sinα≤0,再利用三角函数的单调性即可得出.
解答 解:∵$\sqrt{1-co{s}^{2}α}$=-sinα,
∴sinα≤0,
∴π+2kπ≤α≤2π+2kπ,k∈Z.
∴角α的取值范围是[π+2kπ,2π+2kπ],k∈Z.
点评 本题考查了三角函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
14.已知向量$\overrightarrow a=(2,-3),\overrightarrow b=(3,2)$,则$\overrightarrow a$与$\overrightarrow b$( )
| A. | 平行且同向 | B. | 垂直 | C. | 不垂直也不平行 | D. | 平行且反向 |
15.设向量$\overrightarrow{a}$=(-1,-2),$\overrightarrow{b}$=(m,m+1),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|等于( )
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{5}{9}$ | D. | 5 |
16.已知数列{an}的首项为15,满足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n}+2n}{{a}_{n+1}-2n}$,an+an+1≠0,且$\frac{{a}_{n}}{n}$>λ2-3λ恒成立,则实数λ的取值范围为( )
| A. | -2<λ<3 | B. | λ≤-2或λ≥3 | C. | -$\frac{3}{2}$<λ<$\frac{9}{2}$ | D. | λ≤-$\frac{3}{2}$或λ≥$\frac{9}{2}$ |
13.将函数f(x)=2sin(3x+φ)(-π<φ<π)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数g(x)的图象,且对任意的x∈R有g(x)+g($\frac{π}{4}$)≥0,则g(x)的单调递增区间为( )
| A. | [$\frac{kπ}{3}$+$\frac{π}{4}$,$\frac{kπ}{3}$+$\frac{5π}{12}$],k∈Z | B. | [$\frac{kπ}{3}$+$\frac{π}{12}$,$\frac{kπ}{3}$+$\frac{π}{4}$],k∈Z | ||
| C. | [$\frac{4kπ}{3}$+$\frac{π}{4}$,$\frac{4kπ}{3}$+$\frac{11π}{12}$],k∈Z | D. | [$\frac{4kπ}{3}$-$\frac{5π}{12}$,$\frac{4kπ}{3}$+$\frac{π}{4}$],k∈Z |