题目内容
已知
是实数,函数
。
(1)若
,求
的值及曲线
在点
处的切线方程;
(2)求
在区间
上的最大值。
(1)
.(2)![]()
解析试题分析:(I)求出f'(x),利用f'(1)=3得到a的值,然后把a代入f(x)中求出f(1)得到切点,而切线的斜率等于f'(1)=3,写出切线方程即可;
(II)令f'(x)=0求出x的值,利用x的值分三个区间讨论f'(x)的正负得到函数的单调区间,根据函数的增减性得到函数的最大值.
(1)解:
,
因为
,所以
.
又当
时,
,
,
所以曲线
在
处的切线方程为
.
(2)解:令
,解得
,
.
当
,即
时,
在
上单调递增,从而
.
当
,即
时,
在
上单调递减,从而
.
当
,即
时,
在
上单调递减,在
上单调递增,从而
综上所述, ![]()
考点:本题主要考查了导数的基本性质、导数的应用等基础知识,以及综合运用所学知识分析问题和解决问题的能力.
点评:解决该试题的关键是理解导数的几何意义的运用,和导数的符号对于函数单调性的影响:导数大于零得到的区间为增区间,导数小于零得到的区间为减区间。对于参数分类讨论是个难点。
练习册系列答案
相关题目