题目内容

6.函数f(x)=$\left\{\begin{array}{l}{{ax}^{2}-6x{+a}^{2}+1(x<1)}\\{{x}^{5-2a}(x≥1)}\end{array}\right.$是R上的单调递减函数,则实数a的取值范围是($\frac{5}{2}$,3].

分析 利用函数的单调性的性质,二次函数、幂函数的性质,求得实数a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{ax}^{2}-6x{+a}^{2}+1(x<1)}\\{{x}^{5-2a}(x≥1)}\end{array}\right.$是R上的单调递减函数,
∴$\left\{\begin{array}{l}{a>0}\\{\frac{3}{a}≥1}\\{5-2a<0}\\{{2a}^{2}-5≥1}\end{array}\right.$,求得$\frac{5}{2}$<a≤3,
故答案为:($\frac{5}{2}$,3].

点评 本题主要考查函数的单调性的性质,二次函数、幂函数的性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网