题目内容
15.若复数z满足$\frac{z}{1-i}=i$,其中i为虚数单位,则z=( )| A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.
解答 解:由$\frac{z}{1-i}=i$,得z=i(1-i)=1+i.
故选:B.
点评 本题考查复数代数形式的乘除运算,是基础的计算题.
练习册系列答案
相关题目
5.随着旅游观念的转变和旅游业的发展,国民在旅游休闲方面的投入不断增多,民众对旅游的需求也在不断提高.某村村委会统计了2011到2015年五年间每年春节期间外出旅游的家庭数,具体统计数据如表所示:
(1)从这5年中随机抽取两年,求外出旅游的家庭数至少有1年多于20个的概率;
(2)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程$\widehat y$=bx+a,
并判断它们之间是正相关还是负相关;
(3)利用(2)中所求出的直线方程估计该村2018年在春节期间外出游泳的家庭数.
参考:用最小二乘法求线性回归方程系数公式$\widehat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\widehat a=\overline y-\widehat b\overline x$.
| 年份(x) | 2011 | 2012 | 2013 | 2014 | 2015 |
| 家庭数(y) | 6 | 10 | 18 | 22 | 26 |
(2)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程$\widehat y$=bx+a,
并判断它们之间是正相关还是负相关;
(3)利用(2)中所求出的直线方程估计该村2018年在春节期间外出游泳的家庭数.
参考:用最小二乘法求线性回归方程系数公式$\widehat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\widehat a=\overline y-\widehat b\overline x$.
3.设集合A={x|(1-x)(1+x)≥0},集合B={y|y=2x,x<0},则A∩B=( )
| A. | (-1,1] | B. | [-1,1] | C. | (0,1) | D. | [-1,+∞) |