题目内容
已知点A(0,2),抛物线y2=2px(p>0)的焦点为F,准线为l,线段FA交抛物线于点B,过点B作l的垂线,垂足为M,若AM⊥MF,则p= .
如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.
(1) 求证:BE=DE;
(2) 若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(φ为参数)的右顶点,求常数a的值.
若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3= .
已知m为实数,直线l1:mx+y+3=0,l2:(3m-2)x+my+2=0,则“m=1”是 “l1∥l2”的 (填“充要”、“充分不必要”、“必要不充分”、“既不充分也不必要”)条件.
已知椭圆C:+=1(a>b>0)的上顶点为A,左、右焦点分别为F1,F2,且椭圆C过点P,以AP为直径的圆恰好过右焦点F2.
(1) 求椭圆C的方程;
(2) 若动直线l与椭圆C有且只有一个公共点,试问:在x轴上是否存在两定点,使其到直线l的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.
设S=R,M={x|-1<x<},N={x|x≤-1},P={x|x≥},则P等于( )
A.M∩N B.M∪N
C.∁S(M∪N) D.∁S(M∩N)
函数f(x)=的定义域为( )
A.(1,+∞) B.[1,+∞)
C.[1,2) D.[1,2)∪(2,+∞)
如图,是解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:
(1)图框①中x=2的含义是什么?
(2)图框②中y1=ax+b的含义是什么?
(3)图框④中y2=ax+b的含义是什么?
(4)该程序框图解决的是怎样的问题?
(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.