题目内容

2.等差数列{an}中,a1=1,a7=-23,若数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为-$\frac{14}{55}$,则n=(  )
A.14B.15C.16D.18

分析 设等差数列{an}的公差为d,利用通项公式可得an=5-4n.可得$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{4}$$(\frac{1}{4n-5}-\frac{1}{4n-1})$,即可得出.

解答 解:设等差数列{an}的公差为d,∵a1=1,a7=-23,
∴-23=1+6d,解得d=-4.
∴an=1-4(n-1)=5-4n.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(5-4n)(1-4n)}$=$\frac{1}{4}$$(\frac{1}{4n-5}-\frac{1}{4n-1})$,
∴数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和=$\frac{1}{4}[(-1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{7})$+…+$(\frac{1}{4n-5}-\frac{1}{4n-1})]$
=$\frac{1}{4}(-1-\frac{1}{4n-1})$,
令$\frac{1}{4}(-1-\frac{1}{4n-1})$=-$\frac{14}{55}$,
则n=14.
故选:A.

点评 本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网