题目内容
7.已知tanθ=2.(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.
分析 (1)利用弦化切的思想即可求解;
(2)利用和与差公式打开,两式相除,弦化切的思想即可求解.
解答 解:∵tanθ=2.
(1)则1+sinθcosθ-cos2θ=$\frac{si{n}^{2}θ+co{s}^{2}θ+sinθcosθ-cos^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{ta{n}^{2}θ+tanθ}{ta{n}^{2}θ+1}$=$\frac{6}{5}$.
(2)由sin(α+θ)=sinαcosθ+cosαsinθ=$\frac{2}{3}$…①,
sin(α-θ)=sinαcosθ-cosαsinθ=-$\frac{1}{5}$…②,
由①÷②,可得:$\frac{sinαcosθ+cosαsinθ}{sinαcosθ-cosαsinθ}=\frac{tanα+tanθ}{tanα-tanθ}$=$-\frac{10}{3}$.
即$\frac{tanα+2}{tanα-2}$=-$\frac{10}{3}$,
∴tanα=$\frac{14}{13}$.
点评 本题主要考察了同角三角函数关系式和和与差公式,弦化切的思想的应用,属于基本知识的考查.
练习册系列答案
相关题目
15.任取a∈(-5,5),则函数f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上单调递减的概率为( )
| A. | $\frac{4}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{10}$ |
16.下列函数中,是偶函数且最小正周期为π的函数是( )
| A. | y=sin2x+cos2x | B. | y=sinx+cosx | C. | $y=cos(2x+\frac{π}{2})$ | D. | $y=sin(2x+\frac{π}{2})$ |