题目内容

7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

分析 (1)利用弦化切的思想即可求解;
(2)利用和与差公式打开,两式相除,弦化切的思想即可求解.

解答 解:∵tanθ=2.
(1)则1+sinθcosθ-cos2θ=$\frac{si{n}^{2}θ+co{s}^{2}θ+sinθcosθ-cos^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{ta{n}^{2}θ+tanθ}{ta{n}^{2}θ+1}$=$\frac{6}{5}$.
(2)由sin(α+θ)=sinαcosθ+cosαsinθ=$\frac{2}{3}$…①,
sin(α-θ)=sinαcosθ-cosαsinθ=-$\frac{1}{5}$…②,
由①÷②,可得:$\frac{sinαcosθ+cosαsinθ}{sinαcosθ-cosαsinθ}=\frac{tanα+tanθ}{tanα-tanθ}$=$-\frac{10}{3}$.
即$\frac{tanα+2}{tanα-2}$=-$\frac{10}{3}$,
∴tanα=$\frac{14}{13}$.

点评 本题主要考察了同角三角函数关系式和和与差公式,弦化切的思想的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网