ÌâÄ¿ÄÚÈÝ
13£®ÉèÏòÁ¿$\overrightarrow{a}$=£¨4sin$\frac{¦Ø}{2}$x£¬1£©£¬$\overrightarrow{b}$=£¨$\frac{1}{2}$cos$\frac{¦Ø}{2}$x£¬-1£©£¨¦Ø£¾0£©£¬Èôº¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$+1ÔÚÇø¼ä[-$\frac{¦Ð}{5}$£¬$\frac{¦Ð}{4}$]Éϵ¥µ÷µÝÔö£¬ÔòʵÊý¦ØµÄȡֵ·¶Î§Îª£¨0£¬2]£®·ÖÎö »¯¼òf£¨x£©=sin¦Øx£¬¸ù¾ÝÕýÏÒº¯ÊýµÄµ¥µ÷ÐԵóöf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£¬´Ó¶øÁгö²»µÈʽ½â³ö¦ØµÄ·¶Î§£®
½â´ð ½â£ºf£¨x£©=$\overrightarrow{a}•\overrightarrow{b}$+1=2sin$\frac{¦Ø}{2}$xcos$\frac{¦Ø}{2}$x=sin¦Øx£¬
Áî-$\frac{¦Ð}{2}$+2k¦Ð¡Ü¦Øx¡Ü$\frac{¦Ð}{2}$+2k¦Ð£¬½âµÃ-$\frac{¦Ð}{2¦Ø}$+$\frac{2k¦Ð}{¦Ø}$¡Üx¡Ü$\frac{¦Ð}{2¦Ø}$+$\frac{2k¦Ð}{¦Ø}$£¬k¡ÊZ£¬
¡ß¦Ø£¾0£¬
¡àf£¨x£©µÄÒ»¸öµ¥µ÷ÔöÇø¼äΪ[-$\frac{¦Ð}{2¦Ø}$£¬$\frac{¦Ð}{2¦Ø}$]£¬
¡à$\left\{\begin{array}{l}{\frac{¦Ð}{4}¡Ü\frac{¦Ð}{2¦Ø}}\\{-\frac{¦Ð}{5}¡Ý-\frac{¦Ð}{2¦Ø}}\end{array}\right.$£¬½âµÃ0£¼¦Ø¡Ü2£®
¹Ê´ð°¸Îª£¨0£¬2]£®
µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄºãµÈ±ä»»£¬ÕýÏÒº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}|{2^x}-1|£¬x¡Ü1\\|{log_{2017}}£¨x-1£©|£¬x£¾1\end{array}$£¬Èô·½³Ìf£¨x£©=tÓÐËĸö²»Í¬µÄʵÊý¸ùa£¬b£¬c£¬d£¬ÇÒa£¼b£¼c£¼d£¬Ôòa+b+$\frac{1}{c}+\frac{1}{d}$µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬1] | B£® | [1£¬2017£© | C£® | £¨-¡Þ£¬1£© | D£® | £¨1£¬2017£© |
1£®ÒÑÖªÃüÌâp£º?x0¡ÊR£¬Ê¹tanx0=2£»£¬ÃüÌâq£º?x¡ÊR£¬¶¼ÓÐx2+2x+1£¾0£¬Ôò£¨¡¡¡¡£©
| A£® | ÃüÌâp¡ÅqΪ¼ÙÃüÌâ | B£® | ÃüÌâp¡ÄqÎªÕæÃüÌâ | ||
| C£® | ÃüÌâp¡Ä£¨©Vq£©ÎªÕæÃüÌâ | D£® | ÃüÌâp¡Å£¨©Vq£©Îª¼ÙÃüÌâ | ||
| E£® | ÃüÌâp¡ÅqΪ¼ÙÃüÌâ |
18£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÍâ½ÓÇò±íÃæ»ýΪ£¨¡¡¡¡£©

| A£® | 3¦Ð | B£® | 5¦Ð | C£® | 10¦Ð | D£® | 20¦Ð |
2£®ÉèF1£¬F2Ϊ˫ÇúÏß$¦££º\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬PΪ¦£ÉÏÒ»µã£¬PF2ÓëxÖá´¹Ö±£¬Ö±ÏßPF1µÄбÂÊΪ$\frac{3}{4}$£¬ÔòË«ÇúÏߦ£µÄ½¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
| A£® | y=¡Àx | B£® | $y=¡À\sqrt{2}x$ | C£® | $y=¡À\sqrt{3}x$ | D£® | y=¡À2x |
3£®ÒÑÖªµãPµÄ×ø±ê£¨x£¬y£©Âú×ã$\left\{\begin{array}{l}x¡Ý-1\\ y¡Ü2\\ 2x-y+2¡Ü0\end{array}\right.$¹ýµãPµÄÖ±ÏßlÓëÔ²O£ºx2+y2=7½»ÓÚA£¬BÁ½µã£¬Ôò|AB|µÄ×îСֵΪ£¨¡¡¡¡£©
| A£® | $\sqrt{2}$ | B£® | $2\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | $2\sqrt{3}$ |