题目内容

13.若底面边长为$\sqrt{3}$,高为2$\sqrt{3}$的正三棱柱内接于半径为R的球O,则球O的半径R的值为(  )
A.2B.$\sqrt{2}$C.1D.$\sqrt{3}$

分析 根据三棱柱的底面边长及高,先得出棱柱底面外接圆的半径及球心距,进而求出三棱柱外接球的球半径.

解答 解:由正三棱柱的底面边长为$\sqrt{3}$,
得底面所在平面截其外接球所成的圆O的半径r=1,
又由正三棱柱的高为2$\sqrt{3}$,则球心到圆O的球心距d=$\sqrt{3}$,
根据球心距,截面圆半径,球半径构成直角三角形,满足勾股定理,我们易得球半径R满足:
R2=r2+d2=4,R=2,
故选A.

点评 本题考查的是棱柱的几何特征及球的外接球半径,考查数形结合思想、化归与转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网