题目内容

17.已知圆O:x2+y2=4上三点A,B,C,且$\overrightarrow{OA}$=$\overrightarrow{BC}$,则$\overrightarrow{AC}$•$\overrightarrow{BA}$=(  )
A.6B.-2$\sqrt{3}$C.-6D.2$\sqrt{3}$

分析 由已知画出图形,然后利用向量的减法法则结合数量积运算求解得答案.

解答 解:∵$\overrightarrow{OA}$=$\overrightarrow{BC}$,
∴O、A、B、C构成平行四边形OABC,
∴$\overrightarrow{AC}=\overrightarrow{OB}$,$\overrightarrow{BA}=\overrightarrow{OA}-\overrightarrow{OB}$,
则$|\overrightarrow{OA}|=|\overrightarrow{OB}|=|\overrightarrow{OC}|=|\overrightarrow{BC}|=2$.
∴△BOC为等边三角形,∠BOC=60°,
则$\overrightarrow{AC}$•$\overrightarrow{BA}$=$\overrightarrow{OB}•(\overrightarrow{OA}-\overrightarrow{OB})=\overrightarrow{OB}•\overrightarrow{OA}-|\overrightarrow{OB}{|}^{2}$=$2×2×(-\frac{1}{2})-4=-6$.
故选:C.

点评 本题考查平面向量的数量积运算,考查了数学转化思想方法和数形结合的解题思想方法,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网