题目内容

8.如图所示,MA⊥平面ABCD,底面ABCD边长为1的正方形,MA=2AB,P是MC上一点,且$\overrightarrow{CP}$=$\frac{1}{5}$$\overrightarrow{CM}$
(1)建立适当的坐标系并求点P坐标;
(2)求证:MB⊥DP.

分析 (1)以A为原点,AB为x轴,AD为y轴,AM为z轴,建立空间直角坐标系,能求出点P坐标.
(2)求出$\overrightarrow{MB}$,$\overrightarrow{DP}$,由∴$\overrightarrow{MB}•\overrightarrow{DP}$=0,能证明MB⊥DP.

解答 解:(1)∵MA⊥平面ABCD,底面ABCD边长为1的正方形,
∴以A为原点,AB为x轴,AD为y轴,AM为z轴,建立空间直角坐标系,
∵MA=2AB,P是MC上一点,且$\overrightarrow{CP}$=$\frac{1}{5}$$\overrightarrow{CM}$,
∴C(1,1,0),M(0,0,2),设P(a,b,c),
则由$\overrightarrow{CP}$=$\frac{1}{5}$$\overrightarrow{CM}$,得(a-1,b-1,c)=(-$\frac{1}{5}$,-$\frac{1}{5}$,$\frac{2}{5}$),
∴$\left\{\begin{array}{l}{a-1=-\frac{1}{5}}\\{b-1=-\frac{1}{5}}\\{c=\frac{2}{5}}\end{array}\right.$,解得a=$\frac{4}{5}$,b=$\frac{4}{5}$,c=$\frac{2}{5}$,
∴点P坐标($\frac{4}{5},\frac{4}{5},\frac{2}{5}$).
证明:(2)B(1,0,0),D(0,1,0),
$\overrightarrow{MB}$=(1,0,-2),$\overrightarrow{DP}$=($\frac{4}{5}$,-$\frac{1}{5}$,$\frac{2}{5}$),
∴$\overrightarrow{MB}•\overrightarrow{DP}$=$\frac{4}{5}+0-\frac{4}{5}$=0,
∴MB⊥DP.

点评 本题考查点的坐标的求法,考查线线垂直的证明,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网