题目内容
2.若复数z满足(1+2i)z=5i,则z=( )| A. | 2+i | B. | 2-i | C. | -2+i | D. | -2-i |
分析 通过分母实数化,求出z即可.
解答 解:∵z满足(1+2i)z=5i,
∴z=$\frac{5i}{1+2i}$=$\frac{5i(1-2i)}{(1+2i)(1-2i)}$=2+i
故选:A.
点评 本题考查了复数的运算,熟练掌握运算性质是解题的关键,本题是一道基础题.
练习册系列答案
相关题目
13.设P(x,y)满足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,且P点到两直线x-2y=0,x+2y=0距离之和不大于$\sqrt{5}$,则x-y的最大值为( )
| A. | $\frac{17}{3}$ | B. | $\frac{15}{4}$ | C. | $\frac{25}{4}$ | D. | $\frac{11}{3}$ |
10.设集合M={x|x2≤4},N={x|log2x≤1},则M∩N=( )
| A. | [-2,2] | B. | {2} | C. | (0,2] | D. | (-∞,2] |
14.已知向量$\overrightarrow a=(2,-3),\overrightarrow b=(3,2)$,则$\overrightarrow a$与$\overrightarrow b$( )
| A. | 平行且同向 | B. | 垂直 | C. | 不垂直也不平行 | D. | 平行且反向 |