题目内容

设等差数列{an}的前n项和为Sn,公差为d.已知S2,S3+1,S4成等差数列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比数列,求
an+1
2(Sn+4)
(n∈N*)的最大值.
考点:数列的求和,数列的函数特性
专题:等差数列与等比数列
分析:(Ⅰ)由题意列出方程解得d;
(Ⅱ)由等差数列的通项公式及前n项和公式求得an、sn,然后利用基本不等式求得最大值.
解答: 解:(Ⅰ)由S2,S3+1,S4成等差数列得s2+s4=2s3+2,…(2分)
即(2a1+d)+(4a1+6d)=2(3a1+3d)+2,得d=2   …(5分)
(Ⅱ)由a1,a2,a5成等比数列得
a
2
2
=a1a5,即(a1+d)2=a1(a1+4d)
解得a1=1                      …(7分)
所以an=a1+(n-1)d=2n-1,sn=
n(a1+an)
2
=n2…(9分)
所以
an+1
2(sn+4)
=
n
n2+4
=
1
n+
4
n
1
4
       …(11分)
所以,当n=2时,
an+1
2(Sn+4)
的最大值为
1
4
   …(12分)
点评:本题主要考查等差数列、等比数列的性质及求和公式知识,考查学生的运算能力及运用基本不等式求函数最值的能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网