题目内容
3.已知数列{an}满足an+1=an-2an+1an,an≠0且a1=1(1)求证:数列$\{\frac{1}{a_n}\}$是等差数列,并求出{an}的通项公式;
(2)令bn=anan+1,求数列{bn}的前n项的和Tn.
分析 (1)数列{an}满足an+1=an-2an+1an,an≠0,变形为:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,又a1=1,即可证明.
(2)bn=anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂项求和”方法即可得出.
解答 (1)证明:数列{an}满足an+1=an-2an+1an,an≠0,变形为:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,又a1=1,
∴数列$\{\frac{1}{a_n}\}$是等差数列,首项为1,公差为2.
∴$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,解得an=$\frac{1}{2n-1}$.
(2)解:bn=anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴数列{bn}的前n项的和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
点评 本题考查了“裂项求和方法”、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.若复数z满足$z=\frac{2+i}{i}$(其中i为虚数单位),则$\overline z$=( )
| A. | -1+2i | B. | -1-2i | C. | 1-2i | D. | 1+2i |