题目内容
若(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+a2+a3+a4+a5等于 .
考点:二项式系数的性质
专题:二项式定理
分析:利用赋值法,令x=1,求出a0+a1+a2+a3+a4+a5的值,再求出a0的值,即得a1+a2+a3+a4+a5的值.
解答:
解:∵(2x-3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,
令x=1,
则(2-3)5=a0+a1+a2+a3+a4+a5=(-1)5=-1,
且a0=(-3)5=-243,
∴a1+a2+a3+a4+a5=-1+243=242.
故答案为:242.
令x=1,
则(2-3)5=a0+a1+a2+a3+a4+a5=(-1)5=-1,
且a0=(-3)5=-243,
∴a1+a2+a3+a4+a5=-1+243=242.
故答案为:242.
点评:本题考查了二项式定理的应用问题,解题时应利用赋值法,容易求出正确的结果.
练习册系列答案
相关题目
已知椭圆的方程为2x2+3y2=6,则此椭圆的离心率为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
在三棱锥P-ABC中,若PA=PB=PC,则顶点P在底面ABC上的射影O必为△ABC的( )
| A、内心 | B、垂心 | C、重心 | D、外心 |