题目内容
9.从1,2,3,4四个数字中任取两个不同数字,则这两个数字之积小于5的概率为( )| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
分析 首先明确所有的事件数已经满足两个数字之积小于5的事件数,路古典概型的公式求概率.
解答 解:从1,2,3,4四个数字中任取两个不同数字共有${C}_{4}^{2}$=6种取法,
这两个数字之积小于5的事件有12,13,14共有3种,
由古典概型公式得从1,2,3,4四个数字中任取两个不同数字,
则这两个数字之积小于5的概率为到$\frac{3}{6}=\frac{1}{2}$;
故选B.
点评 本题考查了古典概型的概率求法;关键是明确所有事件以及满足条件的事件数.
练习册系列答案
相关题目
19.
某学校的特长班有50名学生,其中有体育生20人,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75),按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为a:4:10.
(1)求a的值,并求这50名学生心率的平均数;
(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?请说明理由.
参考数据:
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
(1)求a的值,并求这50名学生心率的平均数;
(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为0.8,请将下面的列联表补充完整,并判断是否有99.5%的把握认为心率小于60次/分与常年进行系统的身体锻炼有关?请说明理由.
参考数据:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| 心率小于60次/分 | 心率不小于60次/分 | 合计 | |
| 体育生 | 8 | 12 | 20 |
| 艺术生 | 2 | 28 | 30 |
| 合计 | 10 | 40 | 50 |
20.已知函数$f(x)=sin({ωx+\frac{π}{6}})({0<ω<2})$满足条件:$f({-\frac{1}{2}})=0$,为了得到y=f(x)的图象,可将函数g(x)=cosωx的图象向右平移m个单位(m>0),则m的最小值为( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |