题目内容
已知集合A={x|0≤x≤1}和集合B={x|y=
},则A∩B等于( )
| x |
| A、(0,1) |
| B、[0,1] |
| C、[0,+∞) |
| D、[0,1) |
考点:交集及其运算
专题:集合
分析:利用交集定义求解.
解答:
解:∵集合A={x|0≤x≤1},集合B={x|y=
}={x|x≥0},
∴A∩B={x|0≤x≤1}=[0,1].
故选:B.
| x |
∴A∩B={x|0≤x≤1}=[0,1].
故选:B.
点评:本题考查交集的求法,解题时要认真审题,是基础题.
练习册系列答案
相关题目
已知a,b是实数,则“|a-b|≥a+b”是“ab<0”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
已知tanθ=-2(-
<θ<0),则
=( )
| π |
| 2 |
| sin2θ+1 |
| cos2θ |
A、-
| ||
B、
| ||
C、-
| ||
D、
|
若抛物线y2=ax经过不等式组
表示的平面区域,则抛物线焦点的横坐标的取值范围是( )
|
A、[
| ||||
B、[
| ||||
C、[
| ||||
D、[
|
在△ABC中,角A,B,C的对边分别为a,b,c,点(a,b)在直线x(sinA-sinB)+ysinB=csinC上.则角C的值为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
函数y=3cos(2x+φ)的图象向右平移
后关于点(
,0)对称,那么|φ|的最小值为( )
| π |
| 3 |
| π |
| 6 |
A、
| ||
B、
| ||
C、
| ||
D、
|
如图直角梯形ABCD中,AB∥DC,∠DAB=90°,DC=1,AB=3,AD=
,点E在边BC上且AC、AE、AB成等比数列,若
=λ
,则λ=( )
| 3 |
| CE |
| EB |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|