题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,点(a,b)在直线x(sinA-sinB)+ysinB=csinC上.则角C的值为(  )
A、
π
6
B、
π
3
C、
π
4
D、
6
考点:正弦定理,两角和与差的余弦函数,两角和与差的正弦函数
专题:解三角形
分析:由点(a,b)在直线x(sinA-sinB)+ysinB=csinC上,可得 a•sinA-a•sinB+b•sinB=c•sinC,再利用正弦定理可得 a2+b2-c2=ab,再由余弦定理求得cosC的值,可得角C的值.
解答: 解:在△ABC中,
∵点(a,b)在直线x(sinA-sinB)+ysinB=csinC上,
∴a•sinA-a•sinB+b•sinB=c•sinC,
再利用正弦定理可得 a2+b2-c2=ab,
故有cosC=
a2+b2-c2
2ab
=
1
2

则角C的值为
π
3

故选:B.
点评:本题主要考查正弦定理和余弦定理的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网