题目内容
17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosA=$-\frac{1}{4}$.(Ⅰ)求${sin^2}\frac{B+C}{2}+cos2A$的值;
(Ⅱ)若$a=\sqrt{3}$,求△ABC面积的最大值.
分析 (I)利用倍角公式即可得出;
(II)利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.
解答 解:(Ⅰ)在△ABC中,∵cosA=$-\frac{1}{4}$,
∴${sin^2}\frac{B+C}{2}+cos2A$=${cos^2}\frac{A}{2}+2{cos^2}A-1$
=$\frac{1+cosA}{2}+2{cos^2}A-1$
=-$\frac{1}{2}$.
(Ⅱ)∵a2=b2+c2-2bccosA=${b^2}+{c^2}+\frac{1}{2}bc$≥$2bc+\frac{1}{2}bc$=$\frac{5}{2}$bc,
∵$a=\sqrt{3}$,∴$bc≤\frac{6}{5}$,当且仅当b=c时取等号,
由cosA=-$\frac{1}{4}$,得sinA=$\frac{{\sqrt{15}}}{4}$,
∴${S_△}ABC=\frac{1}{2}bcsinA$≤$\frac{{3\sqrt{15}}}{20}$,
∴S△ABC的最大值为$\frac{3\sqrt{15}}{20}$.
点评 本题考查了倍角公式、余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.某市近10年的煤气消耗量与使用煤气户数的历史资料如下:
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线;
(3)若市政府下一步再扩大5千煤气用户,试预测该市煤气消耗量将达到多少?
| 年份 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
| x用户(万户) | 1 | 1.2 | 1.6 | 1.8 | 2 | 2.5 | 3.2 | 4 | 4.2 | 4.5 |
| y(百万立方米) | 6 | 7 | 9.8 | 12 | 12.1 | 14.5 | 20 | 24 | 25.4 | 27.5 |
(2)求线性回归方程,并在散点图中加上回归直线;
(3)若市政府下一步再扩大5千煤气用户,试预测该市煤气消耗量将达到多少?
9.若复数$z=\frac{2i}{1-i}$(i是虚数单位),则$\overline z$=( )
| A. | -1+i | B. | -1-i | C. | 1+i | D. | 1-i |
7.△ABC外接圆的半径为$\sqrt{2}$,圆心为O,BC=2,且∠ABC为锐角,则$\overrightarrow{OA}$$•\overrightarrow{BC}$的取值范围是( )
| A. | (-2,2$\sqrt{2}$] | B. | (-2$\sqrt{2}$,2] | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | (-2,2) |