题目内容
13.tan60°+cot45°-sin90°-cos180°=( )| A. | 2+$\sqrt{3}$ | B. | 1+$\sqrt{3}$ | C. | 3+$\sqrt{3}$ | D. | $\sqrt{3}$ |
分析 根据特殊角的三角函数值,代人数值计算即可.
解答 解:tan60°+cot45°-sin90°-cos180°
=$\sqrt{3}$+1-1-(-1)
=1+$\sqrt{3}$.
故选:B.
点评 本题考查了特殊角的三角函数值的计算问题,是基础题目.
练习册系列答案
相关题目
4.某美食杂志社准备举办一次南北大菜的研讨会,共邀请60名一线厨师或美食专家参加,不同菜系的厨师或美食专家人数如下表所示:
(1)从这60名厨师或美食专家中随机选出2名,求2人属于同一菜系的概率;
(2)由于粤菜与川菜是两大著名菜系,现随机从粤菜与川菜的厨师或美食专家中选出2名发言,设粤菜专家发言人数为X,求随机变量X的分布列和数学期望.
| 菜系 | 粤菜 | 川菜 | 鲁菜 | 东北菜 |
| 人数 | 20 | 15 | 15 | 10 |
(2)由于粤菜与川菜是两大著名菜系,现随机从粤菜与川菜的厨师或美食专家中选出2名发言,设粤菜专家发言人数为X,求随机变量X的分布列和数学期望.
18.若复数z=$\frac{ai}{1-2i}$(a<0),其中i为虚数单位,|z|=$\sqrt{5}$,则a的值为( )
| A. | -2 | B. | -3 | C. | -4 | D. | -5 |
2.若函数$f(x)=sin(ωx+\frac{π}{4})(0<ω<2)$的图象关于直线$x=\frac{π}{6}$对称,则f(x)的最小正周期为( )
| A. | $\frac{2π}{3}$ | B. | $\frac{4π}{3}$ | C. | 2π | D. | $\frac{8π}{3}$ |