ÌâÄ¿ÄÚÈÝ
4£®Ä³ÃÀʳÔÓÖ¾Éç×¼±¸¾Ù°ìÒ»´ÎÄϱ±´ó²ËµÄÑÐÌֻᣬ¹²ÑûÇë60ÃûÒ»Ïß³øÊ¦»òÃÀʳר¼Ò²Î¼Ó£¬²»Í¬²ËϵµÄ³øÊ¦»òÃÀʳר¼ÒÈËÊýÈçϱíËùʾ£º| ²Ëϵ | ÔÁ²Ë | ´¨²Ë | ³²Ë | ¶«±±²Ë |
| ÈËÊý | 20 | 15 | 15 | 10 |
£¨2£©ÓÉÓÚÔÁ²ËÓë´¨²ËÊÇÁ½´óÖøÃû²Ëϵ£¬ÏÖËæ»ú´ÓÔÁ²ËÓë´¨²ËµÄ³øÊ¦»òÃÀʳר¼ÒÖÐÑ¡³ö2Ãû·¢ÑÔ£¬ÉèÔÁ²Ëר¼Ò·¢ÑÔÈËÊýΪX£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©´ÓÕâ60Ãû³øÊ¦»òÃÀʳר¼ÒÖÐËæ»úÑ¡³ö2Ãû£¬ÏÈÇó³ö»ù±¾Ê¼þ×ÜÊý£¬ÔÙÇó³ö2ÈËÊôÓÚͬһ²Ëϵ°üº¬µÄ»ù±¾Ê¼þ¸öÊý£¬ÓÉ´ËÄÜÇó³ö2ÈËÊôÓÚͬһ²ËϵµÄ¸Å£®
£¨2£©Ëæ»ú´ÓÔÁ²ËÓë´¨²ËµÄ³øÊ¦»òÃÀʳר¼ÒÖÐÑ¡³ö2Ãû·¢ÑÔ£¬ÉèÔÁ²Ëר¼Ò·¢ÑÔÈËÊýΪX£¬ÔòXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍEX£®
½â´ð ½â£º£¨1£©´ÓÕâ60Ãû³øÊ¦»òÃÀʳר¼ÒÖÐËæ»úÑ¡³ö2Ãû£¬
»ù±¾Ê¼þ×ÜÊýn=${C}_{60}^{2}$=1770£¬
2ÈËÊôÓÚͬһ²Ëϵ°üº¬µÄ»ù±¾Ê¼þ¸öÊýn=${C}_{20}^{2}+{C}_{15}^{2}+{C}_{15}^{2}+{C}_{10}^{2}$=445£¬
¡à2ÈËÊôÓÚͬһ²ËϵµÄ¸ÅÂÊp=$\frac{m}{n}$=$\frac{445}{1770}$=$\frac{89}{354}$£®
£¨2£©Ëæ»ú´ÓÔÁ²ËÓë´¨²ËµÄ³øÊ¦»òÃÀʳר¼ÒÖÐÑ¡³ö2Ãû·¢ÑÔ£¬
ÉèÔÁ²Ëר¼Ò·¢ÑÔÈËÊýΪX£¬ÔòXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬
P£¨X=0£©=$\frac{{C}_{15}^{2}}{{C}_{35}^{2}}$=$\frac{105}{595}$£¬
P£¨X=1£©=$\frac{{C}_{20}^{1}{C}_{15}^{1}}{{C}_{35}^{2}}$=$\frac{300}{595}$£¬
P£¨X=2£©=$\frac{{C}_{20}^{2}}{{C}_{35}^{2}}$=$\frac{190}{595}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 |
| P | $\frac{105}{595}$ | $\frac{300}{595}$ | $\frac{190}{595}$ |
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®
| A£® | 5x+4y-11=0 | B£® | 5x-4y-21=0 | C£® | 25x+16y-89=0 | D£® | 25x-16y-89=0 |
| A£® | £¨0£¬3] | B£® | [$\frac{1}{3}$£¬3] | C£® | [$\frac{1}{3}$£¬3£© | D£® | [$\frac{1}{3}$£¬+¡Þ£© |
| A£® | 2+$\sqrt{3}$ | B£® | 1+$\sqrt{3}$ | C£® | 3+$\sqrt{3}$ | D£® | $\sqrt{3}$ |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |