ÌâÄ¿ÄÚÈÝ
8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®£¨¢ñ£©½«ÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬½«Ö±ÏßlµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãPÔÚÇúÏßCÉÏ£¬ÇóµãPµ½Ö±ÏßlµÄ×î´ó¾àÀ룮
·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ò£©ÉèP£¨2cos¦È£¬sin¦È£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼°ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©ÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬¼´$\frac{\sqrt{2}}{2}£¨¦Ñsin¦È+¦Ñcos¦È£©=\sqrt{2}$£¬Ö±½Ç×ø±ê·½³ÌΪx+y-2=0£»
£¨¢ò£©ÉèP£¨2cos¦È£¬sin¦È£©£¬
ÔòµãPµ½Ö±Ïßl¾àÀëd=$\frac{|2cos¦È+sin¦È-2|}{\sqrt{2}}$=$\frac{|\sqrt{5}sin£¨¦È+¦Á£©-2|}{\sqrt{2}}$£®
¡àµãPµ½Ö±Ïßl¾àÀëµÄ×î´óֵΪ$\frac{2+\sqrt{5}}{\sqrt{2}}$=$\sqrt{2}$+$\frac{\sqrt{10}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¼°ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬ÊôÓÚÖеµÌ⣮
| A£® | 30¡ã | B£® | 60¡ã | C£® | 120¡ã | D£® | 150¡ã |
| A£® | i2 | B£® | ¦Ð | C£® | 1+$\sqrt{3}$i | D£® | £¨1+$\sqrt{3}$£©i |
| A£® | x2-$\frac{{y}^{2}}{4}$=1 | B£® | x2-$\frac{{y}^{2}}{3}$=1 | C£® | x2-$\frac{{y}^{2}}{5}$=1 | D£® | x2-$\frac{{y}^{2}}{6}$=1 |
| A£® | £¨3£¬+¡Þ£© | B£® | [3£¬+¡Þ£© | C£® | £¨-¡Þ£¬3£© | D£® | £¨-¡Þ£¬3] |
| A£® | {1£¬2£¬3} | B£® | {1£¬3} | C£® | £¨1£¬3] | D£® | £¨1£¬5] |
Êг¡µ÷²é±í£º
| °à¼¶Ñ§ÉúÊý | Å䱸½ÌʦÊý | Ó²¼þ½¨Éè·Ñ£¨ÍòÔª£© | ½ÌʦÄêн£¨ÍòÔª£© | |
| ³õÖÐ | 50 | 2.0 | 28 | 1.2 |
| ¸ßÖÐ | 40 | 2.5 | 58 | 1.6 |