题目内容

6.$\frac{tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$等于(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 给式子分子乘以2,利用二倍角的正切函数公式计算.

解答 解:$\frac{tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$=$\frac{1}{2}$×$\frac{2tan\frac{π}{8}}{1-ta{n}^{2}\frac{π}{8}}$=$\frac{1}{2}$tan$\frac{π}{4}$=$\frac{1}{2}$.
故选:D.

点评 本题考查了二倍角的正切公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网