题目内容
19.(1)写出a,b之间有什么关系?
(2)求A∩B所表示的图形的面积S.
分析 (1)在同一坐标系内画出y≥|x-a|、y≤-|x|+b所表示的平面区域,数形结合可得使A∩B≠∅的a,b之间的关系;
(2)由(1)知,A∩B所表示的图形为矩形ACBD,求出矩形面积即可.
解答 解:
(1)不等式y≥|x-a|可化为$\left\{\begin{array}{l}{x-y-a≤0}\\{x≥a}\end{array}\right.$或$\left\{\begin{array}{l}{x+y-a≥0}\\{x<a}\end{array}\right.$,画出它所表示的平面区域如图所示,
不等式y≤-|x|+b可化为$\left\{\begin{array}{l}{x-y-b≤0}\\{x≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y+b≥0}\\{x<0}\end{array}\right.$,
将其表示的平面区域与A表示的平面区域画在同一坐标系中,
如图所示,要使A∩B≠∅,只要b≥a;
(2)由(1)知,A∩B所表示的图形为矩形ACBD,
BE=b-a,在Rt△BDE中,∠DBE=45°,
∴BD=$\frac{\sqrt{2}}{2}(b-a)$,
又$AD=AE+DE=\sqrt{2}a+\frac{\sqrt{2}}{2}(b-a)=\frac{\sqrt{2}}{2}(b+a)$,
∴矩形面积S=$BD•AD=\frac{1}{2}({b}^{2}-{a}^{2})$.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,正确作出图形是解答该题的关键,是中档题.
练习册系列答案
相关题目
16.函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),下列结论中不正确的是( )
| A. | $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$ | B. | (x1-x2)[f(x1)-f(x2)]>0 | ||
| C. | f(a)<f(x1)<f(x2)<f(b) | D. | $\frac{{x}_{1}-{x}_{2}}{f({x}_{1})-f({x}_{2})}>0$ |
7.若点P是函数f(x)=x2-lnx上任意一点,则点P到直线x-y-2=0的最小距离为( )
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | 3 |
11.数列{an}为等差数列,a10=33,a2=1,Sn为数列{an}的前n项和,则S20-2S10等于( )
| A. | 40 | B. | 200 | C. | 400 | D. | 20 |