题目内容
10.2015是等差数列3,7,11…的第 项( )| A. | 502 | B. | 503 | C. | 504 | D. | 505 |
分析 由题意易得数列的通项公式,令其等于2015解n值即可.
解答 解:由题意可得等差数列的公差d=7-3=4,
∴通项公式an=3+4(n-1)=4n-1,
令4n-1=2015可解得n=504
故选:C
点评 本题考查等差数列的通项公式,属基础题.
练习册系列答案
相关题目
1.已知A(2,-2,1),B(1,0,1),C(3,-1,4),则向量$\overrightarrow{AB}与\overrightarrow{AC}$夹角的余弦值为( )
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{55}}{55}$ | C. | $\frac{\sqrt{11}}{11}$ | D. | $\frac{\sqrt{55}}{11}$ |
15.函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$在某一个周期内的最低点和最高点坐标为$(-\frac{π}{12},-2),(\frac{5π}{12},2)$,则该函数的解析式为( )
| A. | $f(x)=2sin(2x+\frac{π}{3})$ | B. | $f(x)=2sin(2x-\frac{π}{3})$ | C. | $f(x)=2sin(2x+\frac{π}{6})$ | D. | $f(x)=2sin(2x-\frac{π}{6})$ |
2.已知$f(x)=\left\{{\begin{array}{l}{-x(-1<x<0)}\\{{x^2}(0≤x<1)}\\{x(1≤x≤2)}\end{array}}\right.$,求$f(\frac{1}{2})$=( )
| A. | $\frac{1}{4}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{4}$ |