题目内容
20.关于x,y的方程组$\left\{{\begin{array}{l}{3ax+2y-1=0}\\{x+ay+3=0}\end{array}}\right.$的增广矩阵是$(\begin{array}{cc}3a&2\\ 1&a\end{array}\right.\begin{array}{c}1\\-3\end{array})\right.$.分析 先把方程组方程组$\left\{\begin{array}{l}3ax+2y-1=0\\ x+ay+3=0\end{array}\right.$改写为$\left\{\begin{array}{l}3ax+2y=1\\ x+ay=-3\end{array}\right.$,再由增广矩阵的概念进行求解.
解答 解:二元一次方程组$\left\{\begin{array}{l}3ax+2y-1=0\\ x+ay+3=0\end{array}\right.$,即$\left\{\begin{array}{l}3ax+2y=1\\ x+ay=-3\end{array}\right.$,
∴二元一次方程组$\left\{\begin{array}{l}3ax+2y=1\\ x+ay=-3\end{array}\right.$的增广矩阵是$(\begin{array}{cc}3a&2\\ 1&a\end{array}\right.\begin{array}{c}1\\-3\end{array})\right.$
$(\begin{array}{cc}3a&2\\ 1&a\end{array}\right.\begin{array}{c}1\\-3\end{array})\right.$,
故答案为:$(\begin{array}{cc}3a&2\\ 1&a\end{array}\right.\begin{array}{c}1\\-3\end{array})\right.$
点评 本题考查二元一次方程组的矩阵形式,是基础题,解题时要认真审题,注意熟练掌握增广矩阵的概念.
练习册系列答案
相关题目
11.已知椭圆方程为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,焦距等于4,则m的值为( )
| A. | 2 | B. | ±2 | C. | 2$\sqrt{3}$ | D. | ±2$\sqrt{3}$ |
15.设A={x|x为合数},B={x|x为质数},N表示自然数集,若E满足A∪B∪E=N,则这样的集合E( )
| A. | 只有一个 | B. | 只有两个 | C. | 至多3个 | D. | 有无数个 |
9.A,B两点在半径为2的球面上,且以线段AB为直径的小圆周长为2π,则A,B两点间的球面距离为( )
| A. | π | B. | 2π | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
10.2015是等差数列3,7,11…的第 项( )
| A. | 502 | B. | 503 | C. | 504 | D. | 505 |