题目内容
10.将函数y=sinx的图象上每个点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),再将得到的图象向左平移$\frac{π}{12}$个单位长度,所得图象的函数解析式为y=sin(2x+$\frac{π}{6}$).分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:将函数y=sinx的图象上每个点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),可得y=sin2x的图象;
再将得到的图象向左平移$\frac{π}{12}$个单位长度,可得y=sin2(x+$\frac{π}{12}$)=sin(2x+$\frac{π}{6}$)的图象,
故答案为:y=sin(2x+$\frac{π}{6}$).
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,得出结论.
练习册系列答案
相关题目
11.执行如图所示的程序,则输入的i的值为( )

| A. | -1 | B. | 0 | C. | -1或2 | D. | 2 |
9.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.图1是甲流水线样本的频率分布直方图,表1是乙流水线样本频数分布表.
表1:(乙流水线样本频数分布表)
(Ⅰ)若以频率作为概率,试估计从甲流水线上任取5件产品,求其中合格品的件数X的数学期望; (Ⅱ)从乙流水线样本的不合格品中任意取x2+y2=2件,求其中超过合格品重量的件数l:y=kx-2的分布列;(Ⅲ)由以上统计数据完成下面$\frac{π}{2}$列联表,并回答有多大的把握认为“产品的包装质量与两条资动包装流水线的选择有关”.
附:下面的临界值表供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
表1:(乙流水线样本频数分布表)
| 产品重量(克) | 频数 |
| (490,495] | 6 |
| (495,500] | 8 |
| (500,505] | 14 |
| (505,510] | 8 |
| (510,515] | 4 |
| 甲流水线 | 乙流水线 | 合计 | |
| 合格品 | a= | b= | |
| 不合格品 | c= | d= | |
| 合 计 | n= |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)