题目内容
14.cos75°cos15°-sin255°sin165°的值是( )| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 0 |
分析 利用诱导公式、两角和差的余弦公式,求得所给式子的值.
解答 解:cos75°cos15°-sin255°sin165°=cos75°cos15°+sin75°sin15°=cos(75°-15°)=cos60°=$\frac{1}{2}$,
故选:B.
点评 本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.
练习册系列答案
相关题目
2.命题“?x∈R,x2-x+1>0”的否定是( )
| A. | ?x∈R,x2-x+1≤0 | B. | ?x∈R,x2-x+1<0 | ||
| C. | ?x0∈R,x02-x0+1≤0 | D. | ?x0∈R,x02-x0+1<0 |
19.函数y=3sin(2x-$\frac{π}{3}$)的图象,经过下列哪个平移变换,可以得到函数y=3sin2x的图象( )
| A. | 向左平移$\frac{π}{6}$ | B. | 向右平移 $\frac{π}{6}$ | C. | 向左平移 $\frac{π}{3}$ | D. | 向右平移$\frac{π}{3}$ |
4.若x>0,y>0,x+y=1,则$\frac{x^2}{x+2}+\frac{y^2}{y+1}$的最小值为( )
| A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{1}{2}$ |